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which agrees completely with the solution given in /3/. 
We note that the general solutions of the equations of equilibrium of the theory of 

asymmetric elasticity obtained here, enable us to solve specific problems. 

REFERENCES 

1. ABOVSKII N.P., ANDREYEV N.P. and DERUGA A.P., Variational Principles of the Theory of 
Elasticity and the Theory of Shells. Moscow, Nauka, 1978. 

2. LUR'YE A.I., Non-linear Theory of Elasticity. Moscow, Nauka, 1980. 
3. NOWACKI W., Teoria niesymetrycznej sprezystosci. Wroclaw: Ossolineum, 1970. 

PNN U.S.S.R.,Vol.SO,No.3,pp.401-404,1986 
Printed in Great Britain 

A HOLE IN A PLATE, OPTIMAL FOR ITS BIAXIAL EXTENSION - COMPRESSION* 

S. B. VIGDERGAUZ and A.V. CHERKAYEV 

Translated by L.K. 

0021-8928/86 $lO.OO+O.OO 
01987 Pergamon Journals Ltd. 

An outline of a hole of equal strength in an elastic plate loaded at 
infinity by mutually perpendicular tensile and cqmpressive forces, is 
obtained. It is shown that under these conditions the hole is bounded 
by a contour with corners, and its form is found by numerical methods. 
It turns out that the contour is very close to rectangular, with slightly 
rounded sides, whose ratio depends on the load. 

Let a thin unbounded plate made of a homogeneous, isc#ropic, linearly elastic material, 
occupy the region S in the plane of the complex variable II t+iy, and let it be weakened by 
a hole with an arbitrary, piecewise-smooth boundary r enclosing the origin of the Cartesian 
coordinate system XOY. Specified forces P, and P,, P,IP,= h act along the axes of this system, 
and the hole is load-free. 

The stress state of the plate is found from the solution of the homogeneous boundary value 
problem /l/ 

o(t)+Q-iSi+g=O; t=r 0) 

where t is the complex coordinate of any point on the contour, and the Muskhelishvili potentials 
v(z) and $((I) holomorphic in S+I' have the following asymptotic form at infinity: 

4v (2) = p, (i + A) s + 0 (I g I-') (2) 

2rp (I) = P, (h - 1) I + 0 (1 z 1-y 

We can also consider problem (1) with the right-hand side f(l)= --'/*P,(i+I)t-l/,P,(k-i)t, 
with respect to potentials decreasing at infinity. 

The equal-strength boundary of the hole is determined, as we know /2/, by the condition 

a,(t) = const, t E r (3) 
expressing the constancy of the tangential component of the stress tensor on it (the normal 
component of this tensor is, according to the boundary condition, equal to zero). 

Such a boundary represents the solution of the problem of optimal design of a hole in a 
plate relative to either of the two optimizing functionals. 

A. The potential energy of the plate deformation functional. First the integral functional 
is regularized by subtracting from its density a constant term corresponding to the homogeneous 
stress field of a solid plate. The functional expresses the weakening effect of a cutout. 
In /3/ it is shown that when (3) holds, a stationary point (for small variations in the form 
of .r) of the functional is reached, provided that the area of the hole is given. 
*Prikl.Matem.Mekhan,50,3,524-528,1986 



402 

B. The functional of the maximum of the local tlises criterion of emergence from the 
elastic state over all points z~(S+r) 

F (I,, 1,1 = iI2 (z) - 312 (zf (4) 

(11, 19 are the first and second invariants of the stress tensor at the point zj. It was 
established in /4, 5/ that (3) represents the necessary condition for a global optimum 
according to (4). 

The problem of the actual determination of the equal strength contour was studied in 
detail in /2/ under an a priori assumption that the forces specified at infinity are of equal 
sign. The contour was found to be an ellipse with a ratio of the axes equal to 1. When h 
tends to zexo of infinity, the ellipse degenerates to a cut parallel to the direction of tie 
load. 

The condition of non-negativity of h is necessary for the existence of an equal strength 
boundary for an arbitrary number of holes. Indeed, the following relation must hold on such 
a boundary: 

?++I -. z=fiT(s),@= &_$ , 2Ztt+S,tEr (5) 

where T(a) is the integral operator of the double layer potential on I'. The proof of the 
identity (5) follows to the latter the proof in /6/, where the case of an axisymmetric system 
of equal-strength cavities in an elastic space was discussed. From (5) it follows that @ is 
an eigenvalue of the operator T, and the known property of its spectrum implies that /7/, 
i3>, I, from which it fol.lows that h>O. Thus no equal strength contours exist when h<O. 

On the other hand, direct investigation of Problem A leads to a condition of optimality 
weaker then (3): the only requirement is that the absolute magnitude of o,(t)/3/ should be 
constant almost everywhere on r. This makes it possible to extend, in an interesting manner, 
the concept of equal strength to the case of h<O which will be considered below. 

Let us call the contour r, on which the following condition almost always holds, the 
modularly equal-strength (M-equal-strength) condition: 

1 0% (t) 1 = const, t E I‘, (6) 
Such a contour can have points at which CI~ changes the sign discontinuously as a result 

of a discontinuous change in the tangent unit vector 2, i.e. when the points in question are 
c*rner points. 

The fundamental local property of the equal strength contour, namely the factthattheMises 
yieldpointisattainedatallitspoints simultaneously foraproportionalincreaseintheload, 
holds also for the M-equal-strength contour. SO far, however, the authors have not yet decided 
whether,the plasticity begins at internal points of the plate, or at the contour. In the case 
of equal-strength contours the investigation of this fact /4, 5/ is based on the maximum 
principle, in connected with the function Req#(z) harmonics in (S +F) and converging according 
to condition (3) to a constant 

4 Re ~'(2) = P, (1 + h); t E S + r (7) 

When the contour is of M-equal-strength, condition (7) obviously does not apply. 
A numerical procedure for determining the M-equal-strength contour consists, assuming 

that it exists, of the following. Let the function oo(t;) map conformally onto S an auxilliary 
region D of the complex variable 6, outside the unit circle y, with the boundaries and points 
at infinity matching. With this approach identity (3) simplifies appreciably the problem 
of determining the equal-strength contour in the regions of arbitrary connectivity: the 
function oo{c) is a sol.ution (with a prescribed asymptotic form) of the outer dual Dirichlet 
problem /2/ for the Muskhelishvili potentials 

Reloo (E) -t- 90 (E)l = 0: rpo (0 = 20 (wo (0) 
Im loa (E) - % (E)1 = 0; E E Y 

which follows from (1) when condition (7) is taken into account. In the case in question, the 
identity (1) previously differentiated with respect to t, takes a more complex form on y 

B%' (E) 90' (E) - 2% (E) cpo" (6) = 2%' (E19" (E) (8) 

The above condition was used in /8/ to construct the equivalent infinite system of linear 
relations 

which was obtained 

and 0% (5,) = 0, (00 (E)): 

a*ck*f = P, (A - 1) (3 

Ornil = &Be (m -k + 1) cn*-~-+l~~ -i- im + ‘) &gl Cm+~*v% (10) 

by substituting into (8) the followzg expansions of the functions 00 (6) 
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w (5) = c,; + 5 c,c-k, GT (5) = 5 akEk 
I;=1 -m 

(11) 

and equating to zero the coefficients of positive powers of i, the latter expressing the 
holomorphic character of the right-hand side of (8) 'in D. The quantityco is a scale multiplier 
whose value is determined by the area A and does not affect the stress field. By virtue of 
the symmetry the coefficients Ck with even, and nk with odd values of k are zero, and the 
remaining coefficients are real. 

The condition of M-equal-strength (6) holds also for y by virtue of the conformality of 
the mapping, provided that we regard o,(E) as the component of the stress tensor tangent to 
the circle. Assuming therefore that Ok is known, we obtain from (g), (lo), according to 
condition (6), an infinite system of linear algebraic equations for {Ck) determining, in toto, 
the transformation of y into the required contour F,,,. Such an approach was proposed earlier 
in /5/ for determining the equal-s$rength boundary under the load 0, (t) #coast. 

Let the function o,(9), which is even by virtue of the symmetry of the problem, have on 
its half-period [O,n/2) the points 9,(l=l,..., I) at which the sign changes. The number and 
position of these points are defined arbitrarily, and therefore represent independent geo- 
metrical parameters of the problem. In the simplest case I= 1, so that we have only four such 
points on Tm 

UT (9) = b,, 10 I<&, 0, (0) = - b,, e1< I0 I <n/2 (12) 
The asymptotic expression (2) also holds in D as s --33 /l/. According to the mean value 

theorem we have, for the harmonic function Recp,'(E), 

f&y = 4 <Re po' (Q, = bon-’ (48, - n) = P, (1 + 5) (13) 
The remaining Ok are found from (12) as Fourier coefficients 

(Ik = 4nbok-1 sin 2k9,, k = 2,4,6,. . . (14) 

The quantities Cb (k = 1,3,5,...) are obtained from the solution of system (10) by virtue of 
the homogeneity independent of the value of b,. The latter in turn is determined by substi- 
tuting (Ck) into (9) , whose right-hand side has been previously transformed, taking (13) into 
account, to the form 

P,(J.- 1) = P, (1. + 1) - 2P, = 4b, (49, - n)/2n - 2P, 

from which we have 

bo=_+; 
s 

d= 
c 

‘kc,,, + 
4(491--n) 

I 
=1 

and finally, from (13) we find L= adP,-I. 
In realizing this scheme of solution system (10) was truncated to 70-r99 terms. The 

results, some of which are given in Table 1, show that the optimal contour determined by 
numerical methods differs from a rectangle with a ratio of the sides p= U/V=fl(9,) only in 
the fact that small segments of the rectilinear boundary adjacent to each corner became 
rounded, and in the magnitude x of the angle itself. It is precisely this difference that 
ensures that (I~ has no singularities, a fact established in advance by (11-13). 

Indeed, when we assume that the singularities of the stress field near the corners have 
a power asymptotic form, the following relation holds /8/ for its indices p((t= 1,2,...,n] : 

sin’ (1 - pi) X = (1 - pi)* sin* X 05) 
The quantity x is measured by going round the corner in the region S in a clockwise 

direction. 
We have established that when s<x<2n, Eq.(15) has simple positive roots less than 

unity. Thus for a right angle we have (x = 312 n) pi = 0.4555, 9, = 9.9115. 
Further study shows that when n<x<x,, we have a unique root of the required type. 

Here x,, z 256O is the first positive root of the transcendental equation x, = arctgx,. 
Table 1 shows that x<x, for any h. The coefficientGI of the asymptotic expansion with 

index p1 is found /8/ from the condition that the load f(i) is orthogonal, and from the 
homogeneous solution of the biharmonic equation corresponding to pl: 

In particular, in the case of a square, the function x1(t) does not change its sign after 
rotation by an angle of n/2/9/, while f(t) does change sign; therefore G,= 0. The same 
situation obtains for rectangles for any 1. 

Using symmetry consideration we can restrict ourselves to the values 9,<445', where V is 
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8,. deg. 1 La 
I I Il. ’ P., I --h I x3 deg. 

1,008 
I,09 (1,06) 
I,20 (1,12) 
1,51 (1,47) 
1,62 (1,55) 
2,57 
2,732 (2,696) 

(1,002 202 
0,042 (0,046) 216 
0,115 (0,126) 219 
0,302 (0,308) 221 

-il ;+?I; 
(0,317) 231 

247 244 

k 

: -(I,1667 -0,14480 
U,1786.16- u,1725.19-1 

10 -I~,5682.10-2 -0,574o.i9-2 

:: 
0,2604.16-L 

' -0,1440.10-' 
0,2699.10-a 

-0,1518.10-~ 
22 0,8917.10-3 0,9520.10-3 

the smaller side of the rectangle directed along the Y axis. The brackets contain the values 

obtained from the solutions due to G.N. Savin /lo/ of the problem of uniaxial stretching of a 

plate with a rectangular hole. The quantity b, was determined only for segments of the 

boundary lying near the middle of the sides, because the stress field near the corners was 

considerably distorted in /ll/ by virtue of retaining only three to four terms in the expansion 

of 00(63 represented by the Christoffel-Schwarz integral. The same problem for a square hole 

was solved in /12/ in a different way, namely by solving numerically the integral Sherman 

equation with preliminary separation of the singularities at the corners. Here good agreement 

of the results was observed for much large rectilinear segments of the boundary. 

Table 2 gives the values of the coefficients of C k for a square from /ll/ (the first 

column) and results obtained using the method proposed here. 

Numerical calculations lead to the assertion that I& can change its sign per half-period 

at most once, otherwise the solution of system (10) will correspond to a non-single-valued 

mapping, and this is physically meaningless. 
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